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The Unit Circle 
 

 An angle is in standard position when the angle’s vertex 
is at the origin of a coordinate system and its initial side 
coincides with the positive x-axis. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 A positive angle is generated by a counterclockwise 
rotation; whereas a negative angle is generated by a 
clockwise rotation. 
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 The reference angle for an angle in standard position is 
the acute angle that the terminal side makes with the    
x-axis. 

 The reference triangle is the right triangle formed which 
includes the reference angle. 

 
The reference angle is θ′. 
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Example:  Find the reference angle for  the following angles. 
 
a) θ = 125°    answer:  θ′ = 180°-125° = 55° 
 
 
 

b) θ = 5  (radians)  answer:  since 5 radians ≈ 286° (Q4) 
θ′ = 2π - 5 ≈ 1.2832  or 
θ′ = 360°-286° = 74° 
 
 
 

c)  θ = 210°    answer:  Q3, so 180°+ θ′ = 210° 
         so 210°-180° = 30° 
 
 
 

d)  θ = 4.1 (radians)  answer:  since 4.1 ≈ 234.9° (Q3) 
         θ′ = 4.1 – π ≈ .9584 or 
         θ′ = 234.9°-180° = 54.9° 
 
 
 

e)  θ = 
−5𝜋

4
    answer: 

 𝜋

4
 

 
 
 

f)   θ = -100°   answer:  80° 
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Definition of Trig Values for Acute Angles 
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with x, y, and r ≠ 0. 
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Definition of Trig Values of Any Angle 
 

Let θ be and angle in standard position with (x, y) a point on 

the terminal side of θ and 022  yxr .  Then 
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*Note:  The value of r is always positive, but the signs on x 

and y depend on the point (x, y), which will change 
depending on which quadrant (x, y) is in. 
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allsintancos!!!! 
 

(all)(sin)(tan)(cos) → What functions are positive, starting 
with Quadrant I. 
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Let’s look at what the reference triangles look like when we 
choose (x, y) so that r=1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Now we have: 

x

y
A

x
x

r

x
A

y
y

r

y
A







tan

1
cos

1
sin

     

y

x
A

x
A

y
A







cot

1
sec

1
csc

 

 

 
**As long as r = 1, we have: cos A = x 
        sin A = y 
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Look at a circle with radius = 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
**For any coordinates on the unit circle, its coordinates are     

(cos θ, sin θ) where θ is an angle in standard position. 
 

**If θ is not an acute angle, then we find the coordinates (x,y) 
(ie. cos θ, sin θ) by using the reference triangle. 

(cos θ, sin θ) 
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The point (x,y) can 
be relaced with 
(cos A, sin A) 
because x=cos  A 
and y=sin A. 
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Consider the unit circle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Think of a number line wrapped around the circle.  The 
length t maps to the point (x, y).  We also know that  

r

s


 
 

On our unit circle, s corresponds to the length of t, and r = 1, 
since the radius of the circle was chosen to be 1.  This gives  

t
t


1


 

 
This means that the length of t (in linear units) = the radian 
measure of θ. 
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By definition, 
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Note:  This is just an alternative way of looking at angles on 

the unit circle.  Since t (in linear units) = θ (in radians), 
then we can also substitute θ in the above definition. 

 
 

Evaluating Trig Functions 
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of θ.  Find the sine, 
cosine, and tangent 
of θ. 
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Solution:   
 
First, find r.   
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Think of positive 
lengths for legs of 
reference triangle: 

Use point (-5, 6) 
directly into the 
definition: 

or 
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Consider again allsintancos. 
 
 

 
 
 
 
 
 
 
 
 

We often need to use this to find trig values. 

 
Example:  Let θ be an angle in the third quadrant such that    

cos θ = -1/4.  Find sin θ and tan θ. 
 

a)  Find sin θ.  Use the Pythagorean identity. 
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b) Find tan θ.  Use the quotient identity for tangent. 
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Example:  Let cos θ = 8/17 and tan θ < 0.  Find sin θ. 
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Since tan θ < 0, we know 
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th
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Example:  Let csc θ = 4 and cos θ < 0.  Find sec θ. 
 
Since cosecant and sine are reciprocals, we know sin θ=¼. 
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The Unit Circle 
 
Because we so often use the special angles of 45°, 30°, 60° 
(π/4, π/3, π/6), it is helpful to memorize the angles and 
coordinates that correspond to these angles around the unit 
circle. 

Since cos θ < 0, we know that θ 
must be in either the 2

nd
 or 3

rd
 

quadrant.  Since we have a 
positive csc θ, our angle must be 
in the 2

nd
 quadrant.  Thus,  
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The Unit Circle 
 

 

 

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y 

x 



CHAT Pre-Calculus 
Section 4.2 and 4.4 

 

16 
 

The Unit Circle 
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The cosine of angle θ is the x-coordinate. 
The sine of angle θ is the y-coordinate. 

 

(x,y) = (cos θ, sin θ) 
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Example:  Using the unit circle, find the following. 
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Even and Odd Trig Functions 

Look at 3


 and 3


. 
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Because cos (θ) = cos (-θ), we say that cosine is an even 
function.   
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Because sin(-θ) = -sin(θ), we say that sine is an odd 
function. 
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Periodic Functions 
 
Remember that coterminal angles have the same terminal 
side.  Thus, they will have the same coordinates on the unit 
circle and the same trig values. 
 
sin 20° = sin (20°+360°) = sin (20°+720°) etc. 
 

cos
2


= cos(

2


+ 2π) = cos(

2


+ 4π)  etc. 

 
We say: sin θ = sin (θ+2kπ)  

cos θ = cos (θ+2kπ),   where k is an integer. 
 

Even and Odd Trigonometric Functions 
 

The cosine and secant functions are even. 
 

cos(-θ) = cos(θ)  sec(-θ) = sec(θ) 
 

The sine, cosecant, tangent, and cotangent 
functions are odd. 

 

sin(-θ) = -sin(θ)   csc(-θ) = -csc(θ) 

tan(-θ) = -tan(θ)  cot(-θ) = -cot(θ) 
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When functions behave like this, we call them periodic 
functions. 
 
Definition:  A function f is periodic if there exists a positive 
real  number c such that  
 

f (x) = f (x+ c) 
 
for all x in the domain of f.  The smallest number c, for which 
the function is periodic is called the period. 
 
In our case we have:  sin (θ+2kπ) = sin θ 

cos (θ+2kπ) = cos θ 
 

The smallest value that 2kπ can be is if k = 1, which gives us 
2(1) π = 2π.  Thus, 
 

The period of f(x) = sin θ is 2π. 
The period of f(x) = cos θ is 2π. 

 
Example:  Find the following: 
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b)  cos 840° 
 

cos1200° = cos(120°+1080°)= cos(120°+ 3(360°)) = 
cos(120°) = -½ 

 

c)  3
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Domain and Range of Sine and Cosine 
 
Let θ = any radian angle measure 
 

Then  x = cos θ     and    y = sin θ 
 

Domain:  What values can you put for θ ? 
 

You can put any real number in for θ (remember 
rotations around the circle). 

 
Range:  What values will you get for cos θ and sin θ? 
 

You will always get a number from -1 to 1. 
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(On the unit circle, you only use the values from -1 to 1 for 
any coordinates on the unit circle, no matter how many 
rotations the angle has.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the Calculator 
 
 
Example:  Find the following: 
 
a)  cot 400°     
 

(Degree mode)  [TAN] (400) [ x
-1

] [ENTER] ≈ 1.1918 
 
 

y 

x 

(0, 1) 

(0, -1) 

(-1, 0) (1, 0) 

 

 

-1 ≤ x ≤ 1 

-1 ≤ y ≤ 1 
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b)  cos -8 
 

(Radian mode)  [COS] (-8)  [ENTER] ≈ -0.1455 
    
 

c)  csc 7

5
 

 
(Radian mode)  [SIN] (5π)7) [ x

-1
]  [ENTER] ≈ -1.1547 

 
 
Example:  Use a calculator to solve tan θ = 1.192               

for 0 ≤ θ ≤ 2π 
 
(Radian mode)  [2

nd
] [TAN] (3.715) [ENTER] ≈ .873 radians 

 

(Degree mode)  [2
nd

] [TAN] (3.715) [ENTER] ≈ 50° 
             
 
 
 
 
 
 
 
 
 
 
 

Remember allsintancos.  
We need to consider all 
of the angles that have 
reference angles of 50° 
where the tangent is 
positive.  This happens in 
the 1

st
 and 3

rd
 quadrants, 

so our answer is  
θ = 50° or 230° 
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50° 

230° 


