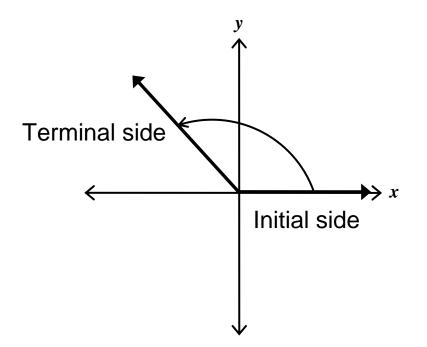
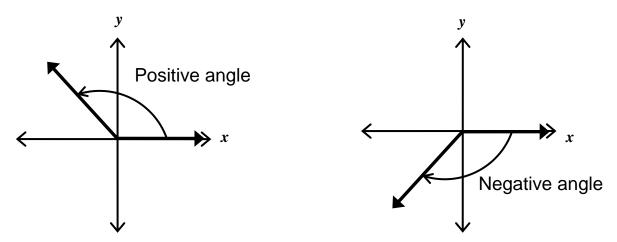
The Unit Circle

• An angle is in <u>standard position</u> when the angle's vertex is at the origin of a coordinate system and its initial side coincides with the positive *x*-axis.

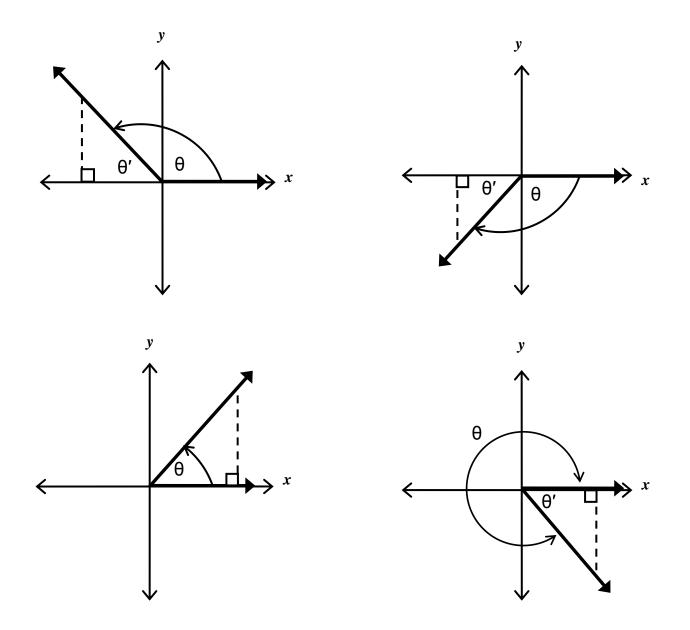


• A <u>positive angle</u> is generated by a counterclockwise rotation; whereas a <u>negative angle</u> is generated by a clockwise rotation.



- The <u>reference angle</u> for an angle in standard position is the acute angle that the terminal side makes with the x-axis.
- The <u>reference triangle</u> is the right triangle formed which includes the reference angle.

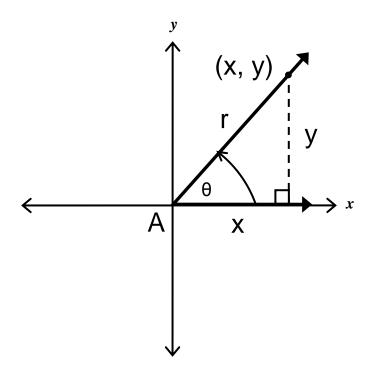
The reference angle is θ' .



Example: Find the reference angle for the following angles.

- a) $\theta = 125^{\circ}$ answer: $\theta' = 180^{\circ} 125^{\circ} = 55^{\circ}$
- b) $\theta = 5$ (radians) answer: since 5 radians $\approx 286^{\circ}$ (Q4) $\theta' = 2\pi - 5 \approx 1.2832$ or $\theta' = 360^{\circ} - 286^{\circ} = 74^{\circ}$
- c) $\theta = 210^{\circ}$ answer: Q3, so $180^{\circ} + \theta' = 210^{\circ}$ so $210^{\circ} - 180^{\circ} = 30^{\circ}$
- d) $\theta = 4.1$ (radians) answer: since $4.1 \approx 234.9^{\circ}$ (Q3) $\theta' = 4.1 - \pi \approx .9584$ or $\theta' = 234.9^{\circ} - 180^{\circ} = 54.9^{\circ}$
- e) $\theta = \frac{-5\pi}{4}$ answer: $\frac{\pi}{4}$
- f) $\theta = -100^{\circ}$ answer: 80°

Definition of Trig Values for Acute Angles

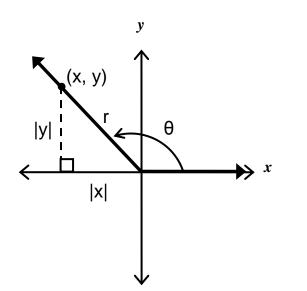


$$\sin A = \frac{opp}{hyp} = \frac{y}{r} \qquad \csc A = \frac{r}{y}$$
$$\cos A = \frac{adj}{hyp} = \frac{x}{r} \qquad \sec A = \frac{r}{x}$$
$$\tan A = \frac{opp}{adj} = \frac{y}{x} \qquad \cot A = \frac{x}{y}$$

with *x*, *y*, and $r \neq 0$.

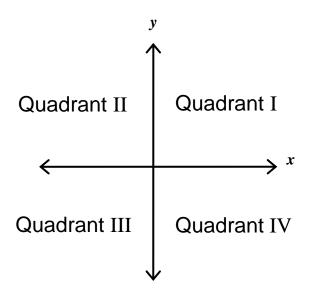
Definition of Trig Values of Any Angle

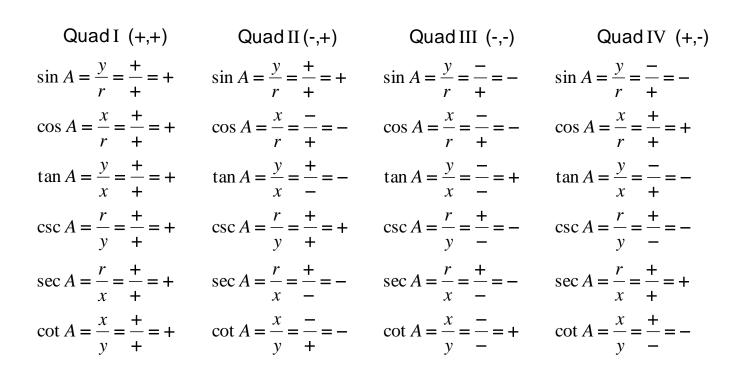
Let θ be and angle in standard position with (x, y) a point on the terminal side of θ and $r = \sqrt{x^2 + y^2} \neq 0$. Then



$$\sin \theta = \frac{y}{r} \qquad \qquad \csc \theta = \frac{r}{y}, \quad y \neq 0$$
$$\cos \theta = \frac{x}{r} \qquad \qquad \sec \theta = \frac{r}{x}, \quad x \neq 0$$
$$\tan \theta = \frac{y}{x}, \quad x \neq 0 \qquad \qquad \cot \theta = \frac{x}{y}, \quad y \neq 0$$

*<u>Note</u>: The value of *r* is always positive, but the signs on *x* and y depend on the point (x, y), which will change depending on which quadrant (x, y) is in.

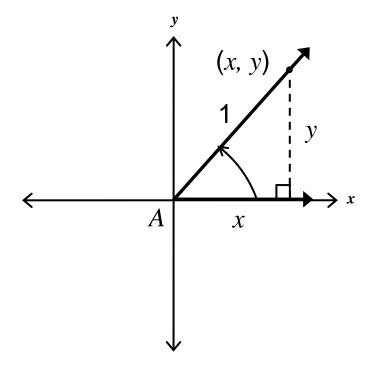




allsintancos!!!!

 $(all)(sin)(tan)(cos) \rightarrow What functions are positive, starting with Quadrant I.$

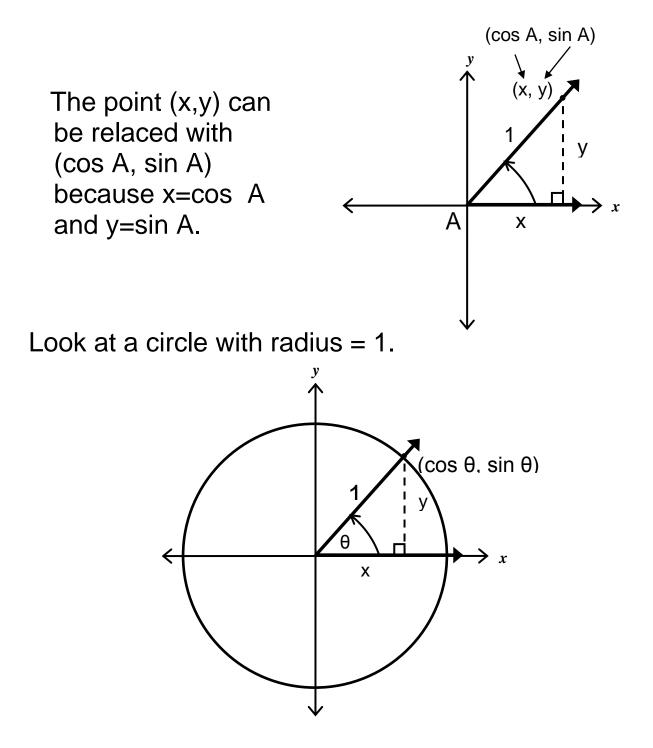
Let's look at what the reference triangles look like when we choose (x, y) so that r=1.



Now we have:

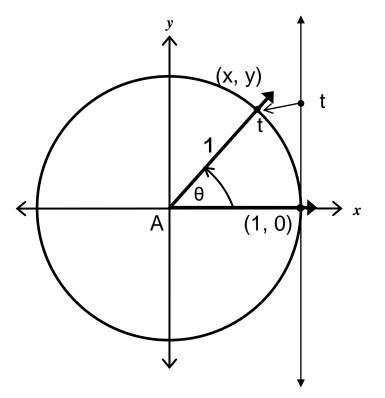
$$\sin A = \frac{y}{r} = \frac{y}{1} = y \qquad \csc A = \frac{1}{y}$$
$$\cos A = \frac{x}{r} = \frac{x}{1} = x \qquad \sec A = \frac{1}{x}$$
$$\tan A = \frac{y}{x} \qquad \cot A = \frac{x}{y}$$

**As long as r = 1, we have: $\cos A = x$ $\sin A = y$



- **For any coordinates on the unit circle, its coordinates are ($\cos \theta$, $\sin \theta$) where θ is an angle in standard position.
- **If θ is <u>not</u> an acute angle, then we find the coordinates (x,y) (ie. $\cos \theta$, $\sin \theta$) by using the reference triangle.

Consider the unit circle.



Think of a number line wrapped around the circle. The length t maps to the point (x, y). We also know that

$$\theta = \frac{s}{r}$$

On our unit circle, s corresponds to the length of *t*, and r = 1, since the radius of the circle was chosen to be 1. This gives

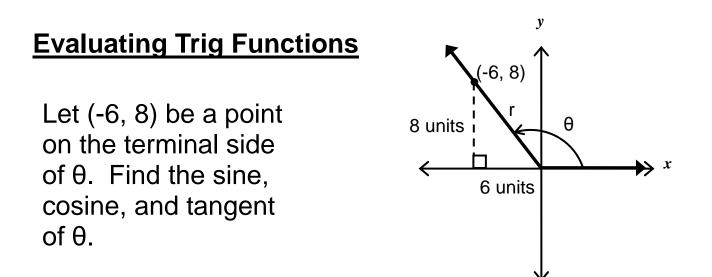
$$\theta = \frac{t}{1} = t$$

This means that the length of *t* (in linear units) = the radian measure of θ .

By definition,

$$\sin t = y \qquad \qquad \csc t = \frac{1}{y}, \quad y \neq 0$$
$$\cos t = x \qquad \qquad \sec t = \frac{1}{x}, \quad x \neq 0$$
$$\tan t = \frac{y}{x}, \quad x \neq 0 \qquad \qquad \cot t = \frac{x}{y}, \quad y \neq 0$$

<u>Note</u>: This is just an alternative way of looking at angles on the unit circle. Since t (in linear units) = θ (in radians), then we can also substitute θ in the above definition.



Solution:

First, find r.

Think of positive lengths for legs of reference triangle: Use point (-5, 6) directly into the definition:

$$r^{2} = |x|^{2} + |y|^{2} \qquad r = \sqrt{x^{2} + y^{2}}$$

$$r^{2} = 6^{2} + 8^{2} \qquad r = \sqrt{(-6)^{2} + (8)^{2}}$$

$$r^{2} = 100 \qquad r = \sqrt{36 + 64}$$

$$r = \sqrt{100} \qquad r = \sqrt{100}$$

$$r = 10 \qquad r = 10$$

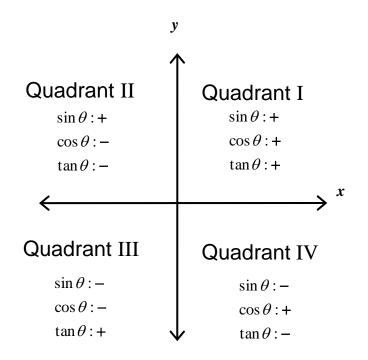
<u>or</u>

$$\sin\theta = \frac{y}{r} = \frac{8}{10} = \frac{4}{5}$$

$$\cos \theta = \frac{x}{r} = \frac{-6}{10} = \frac{-3}{5}$$

$$\tan \theta = \frac{y}{x} = \frac{8}{-6} = \frac{-4}{3}$$

Consider again allsintancos.



We often need to use this to find trig values.

Example: Let θ be an angle in the third quadrant such that $\cos \theta = -1/4$. Find $\sin \theta$ and $\tan \theta$.

a) Find sin θ . Use the Pythagorean identity.

$$\sin^{2} \theta + \cos^{2} \theta = 1$$

$$\sin^{2} \theta + \left(\frac{-1}{4}\right)^{2} = 1$$

$$\sin^{2} \theta + \frac{1}{16} = 1$$

$$\sin^{2} \theta + \frac{1}{16} = 1$$

$$\sin^{2} \theta + \frac{1}{16} = 1$$

$$\sin^{2} \theta = \frac{15}{16}$$

b) Find tan θ . Use the quotient identity for tangent.

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{-\sqrt{15}}{4}}{\frac{-1}{4}} = \frac{-\sqrt{15}}{4} \cdot \frac{4}{-1} = \sqrt{15}$$

Example: Let $\cos \theta = 8/17$ and $\tan \theta < 0$. Find $\sin \theta$.

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\sin^2 \theta + \left(\frac{8}{17}\right)^2 = 1$$
$$\sin^2 \theta + \frac{64}{289} = 1$$
$$\sin^2 \theta = \frac{225}{289}$$
$$\sin \theta = \pm \frac{15}{17}$$

Since $\tan \theta < 0$, we know that θ must be in either the 2nd or 4th quadrant. Since we have a positive $\cos \theta$, our angle must be in the 4th quadrant. Thus, we must have

sin (7 = ---

Example: Let $\csc \theta = 4$ and $\cos \theta < 0$. Find $\sec \theta$.

Since cosecant and sine are reciprocals, we know sin $\theta = \frac{1}{4}$.

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\left(\frac{1}{4}\right)^2 + \cos^2 \theta = 1$$
$$\cos^2 \theta = \frac{15}{16}$$
$$\cos \theta = \frac{\pm \sqrt{15}}{4}$$

Since $\cos \theta < 0$, we know that θ must be in either the 2nd or 3rd quadrant. Since we have a positive $\csc \theta$, our angle must be in the 2nd quadrant. Thus,

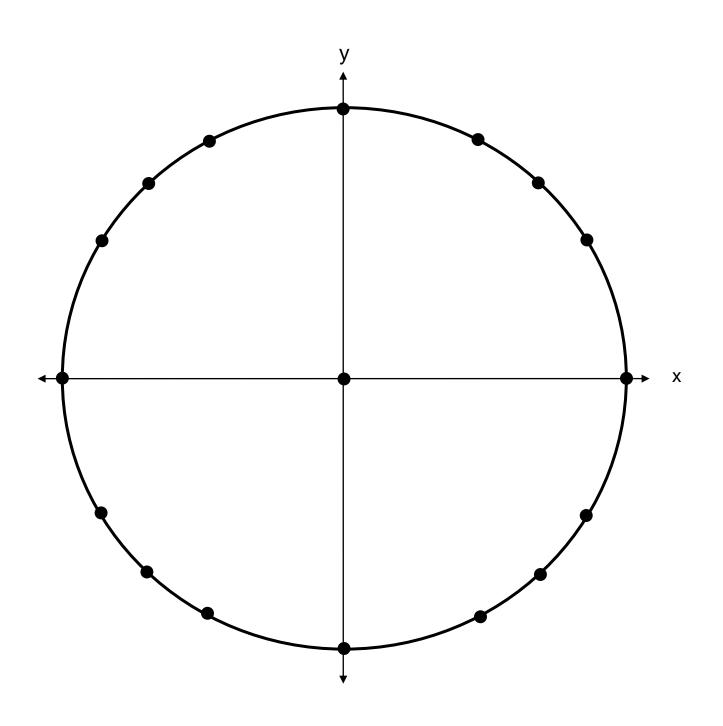
- √

Since
$$\sec \theta = \frac{1}{\cos \theta}$$
 we have
 $\sec \theta = \frac{4}{-\sqrt{15}} \cdot \frac{\sqrt{15}}{\sqrt{15}} = \frac{-4\sqrt{15}}{15}$

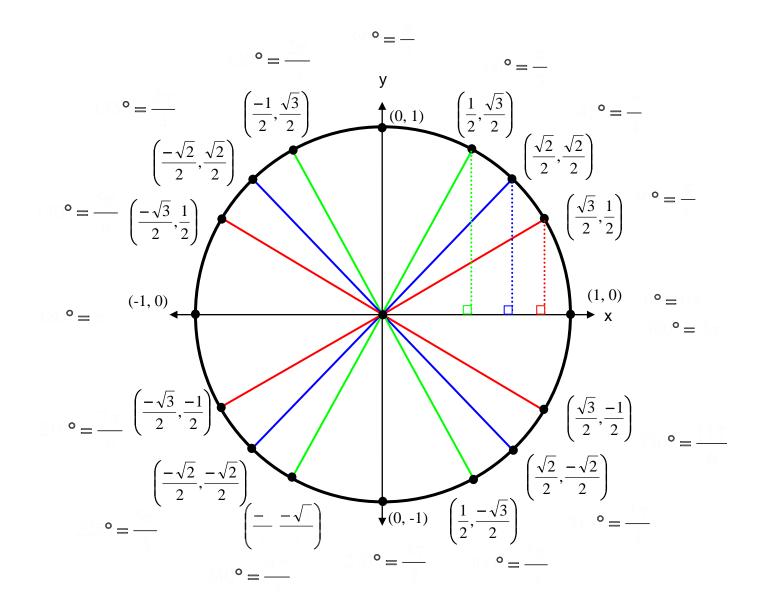
The Unit Circle

Because we so often use the special angles of 45°, 30°, 60° ($\pi/4$, $\pi/3$, $\pi/6$), it is helpful to memorize the angles and coordinates that correspond to these angles around the unit circle.

The Unit Circle



The Unit Circle



The cosine of angle θ is the *x*-coordinate. The sine of angle θ is the *y*-coordinate.

 $(x,y) = (\cos \theta, \sin \theta)$

Example: Using the unit circle, find the following.

a) $\sin \frac{3\pi}{4}$ answer: $\frac{\sqrt{2}}{2}$ b) $\cos \frac{-\pi}{2}$ answer: 0 c) $\tan 300^{\circ}$ answer: $\frac{-\sqrt{3}}{2} \cdot \frac{2}{1} = -\sqrt{3}$

d) $\csc \pi$ answer: $\frac{1}{0} = undefined$

Even and Odd Trig Functions Look at $\frac{\pi}{3}$ and $\frac{-\pi}{3}$. $\cos \frac{\pi}{3} = \frac{1}{2}$ and $\cos \frac{-\pi}{3} = \frac{1}{2}$

Because $\cos(\theta) = \cos(-\theta)$, we say that \cos is an <u>even</u> function.

$$\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \quad \text{and } \sin \frac{-\pi}{3} = \frac{-\sqrt{3}}{2} \checkmark \qquad \text{This is the} \\ \frac{opposite}{\sin \frac{\pi}{3}} \text{ of} \\ \sin \frac{\pi}{3} \end{cases}$$

Because $sin(-\theta) = -sin(\theta)$, we say that sine is an <u>odd</u> function.

Even and Odd Trigonometric FunctionsThe cosine and secant functions are even. $cos(-\theta) = cos(\theta)$ $sec(-\theta) = sec(\theta)$ The sine, cosecant, tangent, and cotangent
functions are odd. $sin(-\theta) = -sin(\theta)$ $csc(-\theta) = -csc(\theta)$
 $cot(-\theta) = -cot(\theta)$

Periodic Functions

Remember that coterminal angles have the same terminal side. Thus, they will have the same coordinates on the unit circle and the same trig values.

 $\sin 20^\circ = \sin (20^\circ + 360^\circ) = \sin (20^\circ + 720^\circ)$ etc.

$$\cos\frac{\pi}{2} = \cos(\frac{\pi}{2} + 2\pi) = \cos(\frac{\pi}{2} + 4\pi)$$
 etc.

We say: $\sin \theta = \sin (\theta + 2k\pi)$ $\cos \theta = \cos (\theta + 2k\pi)$, where k is an integer. When functions behave like this, we call them periodic <u>functions</u>.

<u>Definition</u>: A function f is <u>periodic</u> if there exists a positive real number c such that

f(x) = f(x+c)

for all x in the domain of f. The smallest number c, for which the function is periodic is called the <u>period</u>.

In our case we have: $sin (\theta+2k\pi) = sin \theta$ $cos (\theta+2k\pi) = cos \theta$

The smallest value that $2k\pi$ can be is if k = 1, which gives us $2(1) \pi = 2\pi$. Thus,

The period of $f(x) = \sin \theta$ is 2π . The period of $f(x) = \cos \theta$ is 2π .

Example: Find the following:

a)
$$\sin \frac{25\pi}{4}$$

$$\sin\frac{25\pi}{4} = \sin\left(\frac{\pi}{4} + \frac{24\pi}{4}\right) = \sin\left(\frac{\pi}{4} + 6\pi\right) = \sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

b) cos 840°

 $\cos 1200^\circ = \cos(120^\circ + 1080^\circ) = \cos(120^\circ + 3(360^\circ)) = \cos(120^\circ) = -\frac{1}{2}$

$$c) \cos \frac{3\pi}{3}$$

$$\cos\frac{38\pi}{3} = \cos\left(12\frac{2}{3}\pi\right) = \cos\left(\frac{2\pi}{3} + 12\pi\right) = \cos\frac{2\pi}{3} = \frac{-1}{2}$$

Domain and Range of Sine and Cosine

Let θ = any radian angle measure

Then $x = \cos \theta$ and $y = \sin \theta$

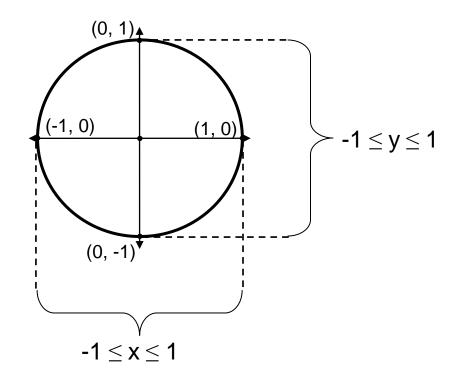
<u>Domain</u>: What values can you put for θ ?

You can put any real number in for θ (remember rotations around the circle).

<u>Range</u>: What values will you get for $\cos \theta$ and $\sin \theta$?

You will always get a number from -1 to 1.

(On the unit circle, you only use the values from -1 to 1 for any coordinates on the unit circle, no matter how many rotations the angle has.)



Using the Calculator

Example: Find the following:

a) cot 400°

(Degree mode) [TAN] (400) [x⁻¹] [ENTER] ≈ 1.1918

b) cos -8

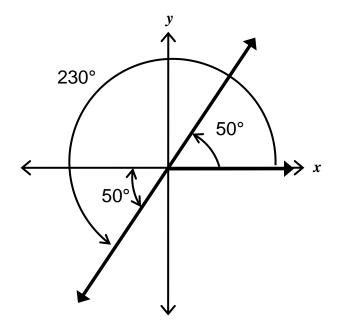
(Radian mode) [COS] (-8) [ENTER] ≈ -0.1455

c) csc $\frac{5\pi}{7}$

(Radian mode) [SIN] (5π) 7) [x⁻¹] [ENTER] \approx -1.1547

Example: Use a calculator to solve tan θ = 1.192 for $0 \le \theta \le 2\pi$

(Radian mode) [2nd] [TAN] (3.715) [ENTER] ≈ .873 radians (Degree mode) [2nd] [TAN] (3.715) [ENTER] ≈ 50°



Remember allsintancos. We need to consider all of the angles that have reference angles of 50° where the tangent is positive. This happens in the 1st and 3rd quadrants, so our answer is $\theta = 50^{\circ}$ or 230°