The Unit Circle

• An angle is in standard position when the angle's vertex is at the origin of a coordinate system and its initial side coincides with the positive *x*-axis.

• A positive angle is generated by a counterclockwise rotation; whereas a negative angle is generated by a clockwise rotation.

- The reference angle for an angle in standard position is the acute angle that the terminal side makes with the x-axis.
- The reference triangle is the right triangle formed which includes the reference angle.

The reference angle is θ′.

Example: Find the reference angle for the following angles.

- a) θ = 125°
answer: θ' = 180°-125° = 55°
- b) θ = 5 (radians) answer: since 5 radians \approx 286° (Q4) $\theta' = 2\pi - 5 \approx 1.2832$ or θ′ = 360°-286° = 74°
- c) $\theta = 210^{\circ}$ answer: Q3, so 180° + θ ' = 210[°] so 210° -180 $^{\circ}$ = 30 $^{\circ}$
- d) θ = 4.1 (radians) answer: since 4.1 \approx 234.9° (Q3) $\theta' = 4.1 - \pi \approx .9584$ or θ′ = 234.9°-180° = 54.9°
- e) $\theta = \frac{-5\pi}{4}$ 4 answer: $\frac{\pi}{4}$ 4
- f) θ = -100° answer: 80°

Definition of Trig Values for Acute Angles

$$
\sin A = \frac{opp}{hyp} = \frac{y}{r}
$$
\n
$$
\cos A = \frac{adj}{hyp} = \frac{x}{r}
$$
\n
$$
\sec A = \frac{r}{x}
$$
\n
$$
\tan A = \frac{opp}{adj} = \frac{y}{x}
$$
\n
$$
\cot A = \frac{x}{y}
$$

with *x*, *y*, and *r* ≠ 0.

Definition of Trig Values of Any Angle

Let θ be and angle in standard position with (x, y) a point on the terminal side of θ and $r = \sqrt{x^2 + y^2} \neq 0$. Then

$$
\sin \theta = \frac{y}{r} \qquad \csc \theta = \frac{r}{y}, \quad y \neq 0
$$

$$
\cos \theta = \frac{x}{r} \qquad \sec \theta = \frac{r}{x}, \quad x \neq 0
$$

$$
\tan \theta = \frac{y}{x}, \quad x \neq 0 \qquad \cot \theta = \frac{x}{y}, \quad y \neq 0
$$

***Note**: The value of *r* is always positive, but the signs on *x* and y depend on the point (*x, y*), which will change depending on which quadrant (*x, y*) is in.

allsintancos!!!!

 $(all)(sin)(tan)(cos) \rightarrow What$ functions are positive, starting with Quadrant I.

Let's look at what the reference triangles look like when we choose (x, y) so that $r=1$.

Now we have:

$$
\sin A = \frac{y}{r} = \frac{y}{1} = y \qquad \csc A = \frac{1}{y}
$$

$$
\cos A = \frac{x}{r} = \frac{x}{1} = x \qquad \sec A = \frac{1}{x}
$$

$$
\tan A = \frac{y}{x} \qquad \cot A = \frac{x}{y}
$$

**As long as $r = 1$, we have: $cos A = x$ $sin A = y$

- **For any coordinates on the unit circle, its coordinates are (cos θ, sin θ) where θ is an angle in standard position.
- **If θ is not an acute angle, then we find the coordinates (x,y) (ie. cos θ , sin θ) by using the reference triangle.

Consider the unit circle.

Think of a number line wrapped around the circle. The length *t* maps to the point (x, y). We also know that

$$
\theta = \frac{s}{r}
$$

On our unit circle, s corresponds to the length of *t*, and *r* = 1, since the radius of the circle was chosen to be 1. This gives

$$
\theta = \frac{t}{1} = t
$$

This means that the length of t (in linear units) = the radian measure of θ.

By definition,

$$
\sin t = y \qquad \csc t = \frac{1}{y}, \quad y \neq 0
$$

$$
\cos t = x \qquad \sec t = \frac{1}{x}, \quad x \neq 0
$$

$$
\tan t = \frac{y}{x}, \quad x \neq 0 \qquad \cot t = \frac{x}{y}, \quad y \neq 0
$$

Note: This is just an alternative way of looking at angles on the unit circle. Since t (in linear units) = θ (in radians), then we can also substitute θ in the above definition.

Solution:

First, find r.

Think of positive lengths for legs of reference triangle:

directly into the definition: or

Use point (-5, 6)

 $r = 10$ $r = \sqrt{100}$ $r^2 = 100$ $r^2 = 6^2 + 8^2$ $r^{2} = |x|^{2} + |y|^{2}$ $r = 10$ $r = \sqrt{100}$ $r = \sqrt{36 + 64}$ $r = \sqrt{(-6)^2 + (8)^2}$ $r = \sqrt{x^2 + y^2}$

$$
\sin \theta = \frac{y}{r} = \frac{8}{10} = \frac{4}{5}
$$

$$
\cos \theta = \frac{x}{r} = \frac{-6}{10} = \frac{-3}{5}
$$

$$
\tan \theta = \frac{y}{x} = \frac{8}{-6} = \frac{-4}{3}
$$

Consider again allsintancos.

We often need to use this to find trig values.

Example: Let θ be an angle in the third quadrant such that cos θ = -1/4. Find sin θ and tan θ.

a) Find sin θ. Use the Pythagorean identity.

$$
\sin^2 \theta + \cos^2 \theta = 1
$$
\n
$$
\sin^2 \theta + \left(\frac{-1}{4}\right)^2 = 1
$$
\n
$$
\sin^2 \theta = \frac{15}{16}
$$
\n
$$
\sin^2 \theta = \frac{15}{16}
$$
\n
$$
\sin \theta = \pm \frac{\sqrt{15}}{4}
$$
\n
$$
\sin \theta = \pm \frac{\sqrt{15}}{4}
$$
\n
$$
\sin \theta = \frac{-\sqrt{15}}{4}
$$
\n
$$
\sin \theta = \frac{-\sqrt{15}}{4}
$$

b) Find tan θ. Use the quotient identity for tangent.

$$
\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{-\sqrt{15}}{-\frac{4}{4}} = \frac{-\sqrt{15}}{-\frac{4}{4}} \cdot \frac{4}{-1} = \sqrt{15}
$$

Example: Let $\cos \theta = 8/17$ and $\tan \theta < 0$. Find $\sin \theta$.

$$
\sin^2 \theta + \cos^2 \theta = 1
$$

$$
\sin^2 \theta + \left(\frac{8}{17}\right)^2 = 1
$$

$$
\sin^2 \theta + \frac{64}{289} = 1
$$

$$
\sin^2 \theta = \frac{225}{289}
$$

$$
\sin \theta = \pm \frac{15}{17}
$$

Since $\tan \theta < 0$, we know that θ must be in either the 2^{nd} or 4^{th} quadrant. Since we have a positive cos θ, our angle must be in the $4th$ quadrant. Thus, we must have

 $\sin \theta = -\frac{15}{15}$

.

Example: Let $\csc \theta = 4$ and $\cos \theta < 0$. Find sec θ .

Since cosecant and sine are reciprocals, we know sin $\theta = \frac{1}{4}$.

$$
\sin^2 \theta + \cos^2 \theta = 1
$$

$$
\left(\frac{1}{4}\right)^2 + \cos^2 \theta = 1
$$

$$
\cos^2 \theta = \frac{15}{16}
$$

$$
\cos \theta = \frac{\pm \sqrt{15}}{4}
$$

Since $\cos \theta$ < 0, we know that θ must be in either the 2^{nd} or 3^{rd} quadrant. Since we have a positive csc θ, our angle must be in the 2^{nd} quadrant. Thus,

 $\theta =$

 $-\sqrt{15}$

Since
$$
\sec \theta = \frac{1}{\cos \theta}
$$
 we have
\n
$$
\sec \theta = \frac{4}{-\sqrt{15}} \cdot \frac{\sqrt{15}}{\sqrt{15}} = \frac{-4\sqrt{15}}{15}
$$

The Unit Circle

Because we so often use the special angles of 45°, 30°, 60° $(\pi/4, \pi/3, \pi/6)$, it is helpful to memorize the angles and coordinates that correspond to these angles around the unit circle.

The Unit Circle

The cosine of angle θ is the *x*-coordinate. The sine of angle θ is the *y*-coordinate.

(*x*,*y*) = (cos θ, sin θ)

Example: Using the unit circle, find the following.

 π π c) $\tan 300^\circ$ 2 b) cos 4 3 a) sin $\overline{}$ answer: 0 $\frac{2}{1}=-$ -1 1 2 2 3 2 2 answer: answer:

d) csc π answer:

Even and Odd Trig Functions Look at $\frac{1}{3}$ π and $\overline{3}$ $-\pi$. $\cos \frac{\pi}{3}$ π $=$ $\frac{1}{2}$ 1 and $\cos \frac{\pi}{3}$ $-\pi$ $=$ $\frac{1}{2}$ 1

Because cos (θ) = cos $(-\theta)$, we say that cosine is an <u>even</u> function.

$$
\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \quad \text{and } \sin \frac{-\pi}{3} = \frac{-\sqrt{3}}{2}
$$

undefined

3

0

Because $sin(-\theta) = -sin(\theta)$, we say that sine is an odd function.

Even and Odd Trigonometric Functions The cosine and secant functions are *even*. $cos(-\theta) = cos(\theta)$ $sec(-\theta) = sec(\theta)$ The sine, cosecant, tangent, and cotangent functions are *odd*. $sin(-\theta) = -sin(\theta)$ $csc(-\theta) = -csc(\theta)$ $tan(-\theta) = -tan(\theta)$ $cot(-\theta) = -cot(\theta)$

Periodic Functions

Remember that coterminal angles have the same terminal side. Thus, they will have the same coordinates on the unit circle and the same trig values.

 $\sin 20^{\circ} = \sin (20^{\circ} + 360^{\circ}) = \sin (20^{\circ} + 720^{\circ})$ etc.

$$
\cos \frac{\pi}{2} = \cos(\frac{\pi}{2} + 2\pi) = \cos(\frac{\pi}{2} + 4\pi)
$$
 etc.

We say: sin $θ = sin (θ + 2kπ)$ cos $θ = cos (θ + 2kπ)$, where k is an integer. When functions behave like this, we call them periodic functions.

Definition: A function *f* is periodic if there exists a positive real number *c* such that

 $f(x) = f(x + c)$

for all *x* in the domain of *f*. The smallest number *c*, for which the function is periodic is called the period.

In our case we have: sin $(\theta + 2k\pi) = \sin \theta$ cos (θ+2k*π*) = cos θ

The smallest value that $2k\pi$ can be is if $k = 1$, which gives us 2(1) π = 2π. Thus,

> The period of $f(x) = \sin \theta$ is 2π . The period of $f(x) = \cos \theta$ is 2π .

Example: Find the following:

a)
$$
\sin \frac{25\pi}{4}
$$

$$
\sin\frac{25\pi}{4} = \sin\left(\frac{\pi}{4} + \frac{24\pi}{4}\right) = \sin\left(\frac{\pi}{4} + 6\pi\right) = \sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}
$$

b) cos 840°

 $\cos 1200^\circ = \cos(120^\circ + 1080^\circ) = \cos(120^\circ + 3(360^\circ)) =$ $cos(120^{\circ}) = -\frac{1}{2}$

$$
c) \cos \frac{3\pi}{3}
$$

$$
\cos\frac{38\pi}{3} = \cos\left(12\frac{2}{3}\pi\right) = \cos\left(\frac{2\pi}{3} + 12\pi\right) = \cos\frac{2\pi}{3} = \frac{-1}{2}
$$

Domain and Range of Sine and Cosine

Let θ = any radian angle measure Then $x = \cos \theta$ and $y = \sin \theta$

Domain: What values can you put for *θ* ?

You can put any real number in for θ (remember rotations around the circle).

Range: What values will you get for cos *θ* and sin *θ*?

You will always get a number from -1 to 1.

(On the unit circle, you only use the values from -1 to 1 for any coordinates on the unit circle, no matter how many rotations the angle has.)

Using the Calculator

Example: Find the following:

a) cot 400°

(Degree mode) [TAN] (400) [x^{-1}] [ENTER] ≈ 1.1918

b) cos -8

(Radian mode) $[COS]$ (-8) $[ENTER] \approx -0.1455$

c) csc $\frac{1}{7}$ 5π

(Radian mode) [SIN] $(5π) 7$) [x⁻¹] [ENTER] ≈ -1.1547

Example: Use a calculator to solve $\tan \theta = 1.192$ for $0 \le \theta \le 2\pi$

(Radian mode) $[2^{nd}]$ [TAN] (3.715) [ENTER] \approx .873 radians (Degree mode) $[2^{nd}]$ [TAN] (3.715) [ENTER] \approx 50 $^{\circ}$

Remember allsintancos. We need to consider all of the angles that have reference angles of 50° where the tangent is positive. This happens in the $1st$ and $3rd$ quadrants, so our answer is θ = 50 $^{\circ}$ or 230 $^{\circ}$